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Abstract
Domain Incremental Learning (DIL) focuses on handling complex domain shifts of a continuous data stream for visual tasks
such as image classification and image segmentation. In real life, severe domain gaps in DIL are generated from various
sources such as data style shifts, data quality degradation, environment changes, and so on. The well-known catastrophic
forgetting issue in DIL becomes even more critical when simultaneously considering multiple sources of domain shifts.
In this paper, we propose a unified and effective paradigm named Compositional Prompting (C-Prompt) to mitigate the
critical forgetting challenge in DIL for image classification tasks. Unlike a popular type of conventional DIL approaches that
need to retain abundant exemplars from the old domains, our exemplar-free C-Prompt leverages a prompt-guided Batch-wise
Exponential Moving Average (BEMA) strategy to adaptively consolidate learned knowledge without retaining any exemplars.
A set of prompts shared across different domains is designed to estimate the knowledge shifts for automatically balancing
knowledge acquisition and forgetting. To enhance the learning ability, our proposed C-Prompt explores a domain-specific pool
of learnable prompts for each domain, and all the prompt pools are further exploited in a cross-domain compositional manner
to facilitate inference. Since the latest prompting-based DIL methods aim to learn one individual prompt for each domain,
they always suffer from critical performance degradation caused by the incorrect prediction of domain index during inference
and the limited learning capacity by using a single prompt per domain. Instead, our C-Prompt can not only readily acquire
domain-specific knowledge but also exploit domain-shared knowledge. Extensive experiments on various large-scale multi-
domain benchmarks have demonstrated the superiority of our proposed C-Prompt compared with state-of-the-art methods.
Code is available at https://github.com/zhoujiahuan1991/IJCV2024-C-Prompt.

Keywords Domain incremental learning · Continual learning · Prompt learning · Continual domain adaptation

1 Introduction

Over the past years, the widely-adopted deep learn-
ing paradigm, pre-training plus finetuning, has remarkably
advanced the progress in many computer vision tasks, such
as image classification (Radford et al., 2021; Lu et al., 2019),
object detection (Yang et al., 2021; Li et al., 2022) and seman-
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tic segmentation (Hao et al., 2020;Zhu et al., 2021).Although
these deep networks can achieve promising performance in
the pre-trained domain, their discriminant and generaliza-
tion abilities are severely limited when dealing with data
from different domains. Such a phenomenon may become
even worse when learning multiple domains in a sequence.
Researches in the field of Domain Adaptation focus on trans-
ferring models to new data domains but struggle to maintain
performance across all domains simultaneously. On the other
hand, the Domain Incremental Learning (DIL) (Tang et al.,
2021) field aims to continuously learn from newly emerging
data domains while retaining knowledge from old domains,
enabling models to handle all data domains concurrently.
Most recent DIL research refers to handling the gaps caused
by data style shifting across domains (Simon et al., 2022;
Tang et al., 2021; Lin et al., 2022) (e.g., art, cartoon, photo,
sketch, and so on). Nonetheless, various realistic factors
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Fig. 1 The domain gaps in DIL are usually caused by various sources
including data style shifts, data quality degradation, realistic environ-
ment changes, and so on

including data quality degradation (e.g., blur, noise, and so
on) and environment changes (e.g., snow, rain, haze, and so
on) also inevitably result in severe domain gaps (Wang et al.,
2022; Hendrycks &Dietterich, 2018) as shown in Fig. 1. The
well-known catastrophic forgetting issue in DIL becomes
even more critical when considering multiple sources of
domain shifts simultaneously.

Generally, to mitigate the above catastrophic forgetting
issue in DIL for image classification tasks, numerous meth-
ods (Tao et al., 2020; Buzzega et al., 2020; Cha et al., 2021)
aim to retain a buffer of exemplars from old domains to per-
form either a rehearsal or a distillation when finetuning the
whole model. However, storing exemplars not only intro-
duces the cost of computation and storage but also readily
violates privacy requirements in real-world applications such
as medical diagnoses (Price & Cohen, 2019). Thus, various
exemplar-free approaches (Garg et al., 2022; Simon et al.,
2022; Wang et al., 2022) are proposed to constrain the model
parameters or outputs during DIL to avoid extreme model
drifting without any rehearsals. However, they always fail to
achieve a proper trade-off between the knowledge acquisi-
tion of new domains and the forgetting of old domains in the
long run.

Inspired by recent advances in visual prompt learn-
ing (Bahng et al., 2022; Zhou et al., 2022; Huang et al.,
2023) which aims at adapting high-capacity deep models

Fig. 2 Compared with the latest prompting-based DIL methods, our
C-Prompt can not only readily acquire domain-specific knowledge but
also exploit domain-shared knowledge owing to the proposed adaptive
BEMA-based compositional prompting model

for downstream tasks effectively, several prompting-based IL
methods Wang et al. 2022a, 2022b are proposed to leverage
one individual prompt for each task to alleviate forgetting.
However, when tackling DIL, their performance is severely
limited by the incorrect selection of prompts during infer-
ence and the restricted capacity of using a single prompt per
domain. Moreover, the above issues may even be aggravated
in DIL due to the complicated sources of domain shifts.

Therefore, in this paper, we explore prompts in a novel
domain-specific and compositional manner to facilitate DIL
for image classification tasks. As shown in Fig. 2, instead of
learning a single prompt for each domain Wang et al. 2022a,
2022b or a single prompt pool for all domains (Wang et al.,
2022c; Smith et al., 2023), our proposed C-Prompt method
maintains a series of domain-specific prompt pools consist-
ing of multiple short-length prompts for each domain. For
different learning samples, different compositions of prompts
are automatically selected from the prompt pool to instruct
learning, with the goal of better acquiring new knowledge
from new domains. To further alleviate catastrophic forget-
ting in DIL, a globally shared prompt is learned using all
samples across all domains as the surrogate of knowledge
shifting across different learning stages. Our globally shared
prompt can readily obtain a proper balance weight for the
proposed Batch-wise ExponentialMoving Average (BEMA)
algorithm to adaptively mitigate forgetting without using any
exemplars. The superiority of our method has been verified
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by extensive experiments on various large-scale benchmarks
against the state-of-the-art DIL approaches. Therefore, the
main contributions of this work are three-fold:

• A novel domain-specific compositional prompt learning
scheme is proposed that can well address the issues of
incorrect domain prediction during inference and the lim-
ited learning capacity of the previous DIL methods.

• To tackle the catastrophic forgetting problem, a globally
shared prompt is designed as the proxy of knowledge
shifting in incremental learning.

• Extensive experiments on a more challenging DIL sce-
nario that simultaneously considers the domain shifts
caused by style changes, quality degradation, and envi-
ronmental changes have verified the superiority of our
proposed method.

2 RelatedWork

2.1 Incremental Learning

Based on different task scenarios, related works on incre-
mental learning are mainly categorized into three types (Ven
& Tolias, 2019): Task Incremental Learning (TIL) (Oren &
Wolf, 2021; Kanakis et al., 2020), Class Incremental Learn-
ing (CIL) (Kirkpatrick et al., 2017; Li & Hoiem, 2017), and
Domain Incremental Learning (DIL) (Volpi et al., 2021;Garg
et al., 2022; Simon et al., 2022). TIL needs to acquire the task
indexes in advance to determine a specific model for infer-
ence (Delange et al., 2021), which limits the effectiveness of
the TIL methods in practical applications. CIL aims to incre-
mentally learn new classeswithout knowing task information
for inference. Unlike CIL, the goal of DIL is to continuously
learn new knowledge from new data domains, while retain-
ing knowledge from old data domains without knowing task
information for inference.

In this paper, we focus on the challenging and practi-
cal DIL scenario. Several DIL methods rely on memory
replay to overcome catastrophic forgetting by storing exem-
plars from old domains (Hayes et al., 2019; Buzzega et al.,
2020; Cha et al., 2021). Recently, different rehearsal-free
DIL approaches are studied by either regularizing important
learning parameters (Garg et al., 2022; Simon et al., 2022;
Wang et al., 2022; Tang et al., 2021; Fini et al., 2022; Wang
et al., 2023) or dynamically modifying model architectures
for new domains (Rusu et al., 2016; Kundu et al., 2020;
Wang et al., 2020). Moreover, various CIL methods have
been migrated and adapted for tackling DIL (Li & Hoiem,
2017; Pellegrini et al., 2020; Kirkpatrick et al., 2017; Hou et
al., 2019; Rebuffi et al., 2017; Xie et al., 2022) but suffer from
limited performances without specifically handling domain
gaps. In summary, almost all the above DIL works focus on

the domain shifts caused by a single source, but their perfor-
mance in handling multi-source domain shifts has not been
well investigated. Therefore, we propose a novel composi-
tional prompting-guided DIL method that has demonstrated
superior performance in simultaneously tackling amore chal-
lenging DIL scenario where the domain shifts are caused by
multiple sources.

2.2 Domain Adaptation

A closely related research area to DIL is Domain Adaptation
(DA) which aims to improve the performance of a model
when there is a domain shifting between the source domain
and target domain (Pan et al., 2010; Patel et al., 2015). DA
techniques, including adversarial learning, image-to-image
translation, cross-domain divergenceminimization, and opti-
mal transport, have been extensively explored (Wang &
Breckon, 2020;Li et al., 2020;Lian et al., 2019). Self-training
has emerged as a prominent trend in DA, leveraging labeled
source data and pseudo-labeled target data to iteratively train
a student model (Hoyer et al., 2022; Zou et al., 2018; Lian et
al., 2019). In recent years, some efforts (Liang et al., 2020;
Yang et al., 2021; Chen et al., 2020; Kundu et al., 2020; Agar-
wal et al., 2022) have gradually shifted towards addressing
the more challenging and practical problem of Source-Free
Domain Adaptation (SFDA), which involves adjusting mod-
els to adapt to newdata domainswithout using source domain
data. SHOT (Liang et al., 2020) utilizes a centroid-based label
refinement for the self-training of model. G-SFDA (Yang et
al., 2021) follow a similar strategy with further measures for
refining pseudo-labels by encouraging consistent predictions
between local neighbor samples. However, the aforemen-
tioned methods tend to focus only on the performance gain
in the target domain regardless of the performance degrada-
tion in the source domain.Moreover, there is usually only one
target domain considered in DA. In contrast, DIL focuses on
alleviating catastrophic forgetting of old domains while con-
tinuously learningmultiple new target domains in a sequence.

2.3 Prompt Learning

As a surging trend in natural language processing (NLP),
manually designed prompts are leveraged to prepend instruc-
tions to the input text (Schick & Schütze, 2020; Shin et al.,
2020). In some recent works such as Prompt Tune (Lester et
al., 2021) and Prefix Tune (Li & Liang, 2021), the prompts
are treated as learnable parameters which can be added to the
pre-trained model. Consequently, the large-scale pre-trained
models are no longer fine-tuned since only tuning the learn-
able prompts instead is enough for amore efficient adaptation
to downstream tasks. In the field of incremental learning, few
works are proposed to investigate prompting. Three latest
methods, L2P (Wang et al., 2022c), DualPrompt (Wang et
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Fig. 3 The overall pipeline of our proposed compositional prompting
(C-Prompt)method.We keep the pre-trainedViT encoder fixed to retain
the knowledge of the pre-trained model. During the training phase, a
separate prompt pool is trained for each image domain to enhance the

model’s ability to acquire new knowledge. Additionally, we design the
globally shared prompt to obtain a proper balance weight for the pro-
posed Batch-wise Exponential Moving Average (BEMA) algorithm, to
adaptively mitigate forgetting of the classifier

al., 2022a) and CODA-Prompt (Smith et al., 2023), aim at
exploring prompt learning in the scenario of CIL rather than
DIL. S-Prompts (Wang et al., 2022b) proposed to learn a
specific prompt for each individual domain in DIL. In com-
parison, our proposed C-Prompt leverages a specific pool
of learnable prompts for each individual domain to enhance
knowledge acquisition meanwhile adopts a prompt-guided
Batch-wise Exponential Moving Average (BEMA) strategy
to adaptively consolidate learned knowledge without retain-
ing any exemplars. In addition, Wang et al. (2022b) has to
train and retain a separate classifier for each domain, which is
not scalable if a large number of domains are trained sequen-
tially. In contrast, our proposed C-Promptmethod only needs
to maintain a single classifier.

3 The ProposedMethod

3.1 Problem Settings and Notations

In this paper, we focus on the challenging Domain Incre-
mental Learning (DIL) scenario, where exists severe modal
variations caused by various sources of domain shifts.
The sequence of domains in DIL is denoted as D =
{D1, · · · ,DS} where the s-th domain Ds = {(xsi , ysi

)}Ns
i=1

contains tuples of the input sample xsi ∈ X and its corre-
sponding label ysi ∈ Y . The goal of DIL is to train a single
model f : X → Y to predict the label y = f (x) ∈ Y of the
test sample x from arbitrary domains. When training on the
s-th domain Ds , the training data of previous s-1 domains
{Di }s−1

i=1 are not available.

In addition, the widely adopted assumption that the
domainboundaries are clear and thedomain changes abruptly
during training (Wang et al. 2022a, 2022b, 2022c) is also
followed here. Moreover, a pre-trained model, e.g., a vision
transformer (ViT) (Dosovitskiy et al., 2020) on ImageNet,
is used as the backbone model and kept frozen through
the entire learning procedure as Wang et al. (2022a, 2022b,
2022c). However, unlike the rehearsal-based methods (Bos-
chini et al., 2022; Rebuffi et al., 2017), we do not use any
form of rehearsal buffers in our method.

3.2 Preliminary of Prompt Learning

As the latest learning paradigm, prompt learning initially
emerged in the field of NLP (Schick & Schütze, 2020; Shin
et al., 2020) but has rapidly spread to the computer vision
area recently. A recent visual prompting technique, known as
Prompt Tuning (PT) (Lester et al., 2021), proposes to freeze
the model while learning the prompt parameters attached
before the input token of a ViT to perform the downstream
task.

Given an input sample x ∈ R
H×W×C and a pre-trained

ViT fenc = fe ◦ fa where fe and fa are the pre-trained
input embedding layer and self-attention layers separately.
The embedding layer fe firstly projects x into a sequence-
like output feature hx :

hx = fe (x) , (1)

where hx ∈ R
L×D and L is the token sequence length and

D is the embedding dimension. When solving downstream
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tasks, the pre-trained backbone fenc is frozen, and the prompt
parameters p ∈ R

L p×D with token sequence length L p are
learned. Then, the prompt parameters p is concatenated with
hx to form the final input embedding h∗

x = [
p; hx

]
into the

self-attention layers fa , the specific process is as follows:

fa
(
h∗
x

) = fa
([
p; hx

])

= MSA
(
hQ,

[
pK ; hK

]
,
[
pV ; hV

])
,

(2)

where MSA (·, ·, ·) is Multi-head self-attention layers, pK
and pV are split from p. Finally, the prediction y of input
image x is obtained by a trainable classifier fc as y =
fc

(
fa

(
h∗
x

))
.

3.3 Compositional Prompting for Acquisition
Enhancement

To tackle the challenging DIL task, we propose a novel
compositional prompting method, named C-Prompt to
address the dilemma of knowledge acquisition and forget-
ting as shown in Fig. 3. Our idea is motivated by the latest
prompting-based methods in IL Wang et al. 2022a, 2022b
which aim to learn a single separate prompt for each task but
suffer from two main drawbacks in the DIL scenario. On the
one hand, during inference, it’s required to predict the domain
information of the input sample so as to select the corre-
sponding domain-specific prompt for inference. However, it
is indeed difficult to predict an accurate domain index which
will inevitably hindermodel performance. On the other hand,
using one single prompt is not powerful enough to capture the
enriched intra-domain variations and handle the critical inter-
domain gaps. Moreover, since the domain-specific prompt is
fixed once the domain is trained, there is noway to explore the
intrinsic discriminative information sharing among domains
to further benefit learning which leads to sub-optimal learn-
ing performance.

3.3.1 Training on the s-th Domain

As shown in Algorithm 1 and Fig. 4, to address these draw-
backs, our proposed C-Prompt maintains a domain-specific
prompt pool Ps for the s-th domain during training. Ps

consists of a number of n short-length prompts as shown
in Eq. (3):

Ps = {( ps1, ks1
)
,
(
ps2, k

s
2

)
, · · · ,

(
psn, k

s
n

)}, (3)

where
(
psi , k

s
i

)
is the tuple of the i-th prompt psi ∈ R

L p×D

and its corresponding learnable key ksi ∈ R
D for matching.

L p and D represent the token length and embedding dimen-
sion. For the training of the s-th domain, the prompts in Ps

are automatically matched by each input sample x by utiliz-
ing a query mechanism to reduce the semantic gap between

Fig. 4 Illustration of the testing process of our method on all domains.
For each image, the most relevant prompts are automatically selected
from all domain prompt pools which are further combined as the Comp
Prompt. The image itself, ComP Prompt, and Shared Prompt are jointly
fed into the model for prediction

Algorithm 1 Training on the s-th domain

Input: Data Ds = {(xsi , ysi
)}Ns

i=1, prompt pool Ps , shared prompt pg ,
parameters of classifier and average classifier θ , θ∗, embedding layer
fe, self-attention layers fa .

Output: Tuned prompt poolPs , shared prompt pg , parameters of clas-
sifier and average classifier θ , θ∗.

1: while Ds is not ∅ do
2: Sample a batch B = {(xi , yi )}bi=1 from Ds
3: Ds ⇐ Ds \ B
4: for (xi , yi ) ∈ B do
5: Get { p j }kj=1 based on Equation 6

6: px ⇐ ∑k
j=1

p j

k
7: hx ⇐ fe(x)

8: h∗
x ⇐ [

pg; px; hx
]

9: Px ⇐ fc
(
fa

(
h∗
x
))

10: end for
11: Calculate loss based on Equation 8
12: Optimize θ , Ps and pg
13: Calculate β based on Equation 12
14: θ∗ ⇐ β · θ∗ + (1 − β) · θ

15: end while

Algorithm 2 Testing on all domains

Input: Test imagesX , S domain-specific prompt poolsP = {Ps}Ss=1,
shared prompt pg , average classifier fc, embedding layer fe and
self-attention layers fa .

Output: Predictions of all test samples P.
1: P ⇐ ∅

2: for x ∈ X do
3: Get { p j }kj=1 from P based on Equation 6

4: px ⇐ ∑k
j=1

p j

k
5: hx ⇐ fe(x)

6: h∗
x ⇐ [

pg; px; hx
]

7: Px ⇐ fc
(
fa

(
h∗
x
))

8: P ⇐ P ∪ Px
9: end for
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x and psi . To do so, the whole frozen pre-trained model fenc
is used as the query function q(·) to encode x into the same
dimension D as the keys:

q = fenc : R
H×W×C → R

D. (4)

Then the matching score between q (x) and the prompt keys
ksi can be measured via a matching function S(·, ·):

S(q (x) , ksi ) = 1 − cos
(
q (x) , ksi

)

= 1 − q (x) · ksi
‖q (x)‖2 · ∥

∥ksi
∥
∥
2

. (5)

Specifically, the query vectors q (x) ∈ R
D obtained from

the encoder are not the CLS token, but rather the first image
token.

Thus, the top-k matched prompts in Ps for the input x
can be obtained via solving Eq. (6):

Ks
x = argmax

{ni }ki=1⊆Nn

k∑

i=1

S (
q (x) , ksni

)
. (6)

whereKs
x is a subset of top-k keys selected for x, and {ni }ki=1

are k indices fromNn denoting top-kmatched prompts. Here,
Nn represents the set of integers from 1 to n. Accordingly,
Ps

x is a subset of matched prompts from Ps . Once Ps
x is

determined, a compositional prompt psx for x can be obtained
via a simple yet effective linear combination function gc :
R

L p×D×k → R
L p×D:

psx = gc
(
psn1 , p

s
n2 , · · · , psnk

) =
k∑

i=1

psni
k

. (7)

The compositional prompt psx is further concatenated with
the embedding result hx to form the final input h∗

x =[
psx; hx

]
of the self-attention layers.

3.3.2 Optimization Objective

During the training of s-th domain, the compositional
prompt-added embedding h∗

x is fed into the frozen self-
attention backbone fa and a learnable classifier fc.Moreover,
the globally shared prompt pg is added to the MSA layers
of fenc. Finally, the prompt pool Ps , the globally shared
prompt pg and learnable classifier fc are jointly trained in
an end-to-end fashion:

min
Ps , pg , fc

L (
fc

(
fa

(
h∗
x
))

, y
) + λ

∑
S (

q (x) , ksni
)
, (8)

whereL is the softmax cross-entropy loss andλ is aweighting
parameter.

3.3.3 Testing on All Domains

As shown in Algorithm 2, once all the domains D are incre-
mentally learned, we will obtain S domain-specific prompt
poolsP = {Ps}Ss=1. Instead of tackling the difficult domain
index prediction task as in Wang et al. 2022a, 2022b, we
directly leverage all the N = n · S prompts in P as the
common prompt pool for all the testing samples. The same
matching strategy in Eq. (6) is adopted but prompts from
different domains can be readily matched and further fused
based on Eq. (7). Therefore, our prompt composition opera-
tion not only avoids adding too many prompts into inference
to increase the computational cost but also encourages inter-
domain knowledge transfer and aggregation in test time.

3.4 Globally Shared Prompting for Anti-Forgetting

In our proposed C-Prompt method, besides leveraging P to
enhance knowledge acquisition, we further design a globally
shared prompt pg ∈ R

Lc×D added to the first two multi-
head self-attention (MSA) layers. Different from P , the pg
is designed to be shared by all the samples across all domains,
and it is a direct and intuitive idea that the variations in the
globally shared prompt could reflect the model’s acquisition
of newknowledge and forgetting of old knowledge.To empir-
ically validate this notion, we conducted experiments where
the model sequentially learned 15 different domains. We
computed theEuclideandistance between the globally shared
prompt of the s-th domain Ds and the (s − 1)-th domain
Ds−1 to quantify the prompt’s variation. Additionally, we
compared the model’s performance on the Ds−1 before and
after learning the Ds−1, using the difference as a measure
of knowledge forgetting. By plotting the scatter plot of the
prompt variation and model knowledge forgetting (Fig. 5),
we visually observed a strong correlation between the shared
prompt’s parameter changes and the model’s knowledge for-
getting. Hence, by calculating the shared prompt, we can
estimate the degree of the model’s forgetting of old knowl-
edge, which enables a better balance between acquiring new
knowledge and forgetting old knowledge when using EMA
for classifier parameter fusion.

As shown in Fig. 3, based on the globally shared prompt
pg , we propose a novel batch-wise adaptive exponential
moving average (BEMA) strategy to alleviate the catas-
trophic forgetting in DIL. The overall pipeline of BEMA is
illustrated in Fig. 6. Denote {θ i }Bi=1 as the classifier param-
eters of B consecutive batches in training and θ∗

i as the
historical average classifier parameters at the t-th batchwhere
θ∗
1 = θ1. When t � 2, we calculate θ∗

t by

θ∗
t = βt · θ∗

t−1 + (1 − βt ) · θ t , (9)
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Fig. 5 The scatter plot illustrates the relationship between the variation
of the global prompt parameters and the model’s knowledge forgetting
in DIL. The experiments are conducted on the ImageNet-R dataset,
sequentially training the model on 15 different domains

where βt is the adaptive weight of the t-th batch. Intuitively,
the larger βt is, the smaller the weight of the newly learned
classifier parameters is, the stronger the ability to alleviate

forgetting and the worse the learning ability of new knowl-
edge is, and vice versa.

To obtain an appropriate βt in Eq. (9) for different batches,
we take the parameter updates of pg from all training batches
into consideration. Denote { pig}Bi=1 as the historical shared
prompts learned from B consecutive batches, then the param-
eter changes between pt−1

g and ptg can be measured as:

Gt = φ
(
pt−1
g , ptg

)
, (10)

whereφ (·, ·) can be chosen as anEuclidean distance function
for convenience. Thus, G∗

t can be calculated as the average
of {Gi }ti=1:

G∗
t = 1

t − 1

t∑

i=2

Gt , t � 2. (11)

Then the adaptive weight βt can be obtained as:

βt = 1 − exp

( Gt
G∗
t

− η

)
, (12)

where η is a hyperparameter to regularize the value of βt .

Fig. 6 The pipeline of our proposedBEMAalgorithm.During the train-
ing phase, The model’s forgetting of old knowledge is measured by
calculating the change in the shared prompt between two batches. Then
the fusion weight βt between the Training Classifier and Average Clas-

sifier is adaptively generated to achieve a balance between knowledge
acquisition and forgetting. In the testing phase, we use the Average
Classifier to make predictions for the test samples
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3.5 Comparison with Latest Prompting-Based DIL
Methods

To further demonstrate the contribution of our method, we
conducted a systematic comparison and analysis between C-
Prompt and the latest prompting-based DIL methods. Our
method differs from other prompting-based DIL methods
mainly in four aspects: prompt design, training strategy of
prompts, usage of prompts during testing, and the role of
prompts in mitigating classifier forgetting. Therefore, we
compare and analyze prompting-based DIL methods from
these four aspects.

3.5.1 S-Prompts & DualPrompt

Method Firstly, these methods design a separate set of
prompts pt for each domain Dt . Secondly, during training
on the t-th domain, only the corresponding prompt pt is
trained. Thirdly, during testing, a set of prompts needs to
be selected from t prompts since the domain of the test sam-
ple is unknown. Finally, These methods do not have a design
for mitigating classifier forgetting.

Analysis Firstly, there are differences between the data of
each domain, and the limited learning ability of the model
is due to learning only one set of prompts per domain. Sec-
ondly, as the accuracy of prompt selection decreases with
the increase in the number of domains, the performance of
the model decreases when there are many domains. Thirdly,
since there is no design for mitigating classifier forgetting,
the classifier experiences catastrophic forgetting, leading to
a decrease in model performance.

3.5.2 L2P & CODA-Prompt

Method Firstly, these methods design a shared prompt pool
for all domains. Secondly, during training on each domain,
prompts are freely selected from the entire prompt pool.
Thirdly, during testing, prompts are selected from the entire
pool. Finally, these methods also do not have a design for
mitigating classifier forgetting.

Analysis Firstly, since the entire prompt pool is continu-
ously updated during training, prompts learned in previous
domains will be forgotten during later domain learning. Sec-
ondly, as thesemethods lack a design for mitigating classifier
forgetting, the classifier also experiences catastrophic forget-
ting.

3.5.3 Our C-Prompt

Method Firstly, we design a compositional prompt pool,
where each domain has a separate prompt pool. Secondly,
during training on the t-th domain, only the prompt pool of
the t-th domain is updated. Thirdly, during testing, prompt

matching and combination are performed uniformly across
all domain prompt pools. Finally we also design a globally
shared prompt for all domains, and its parameter changes
reflect the degree of classifier forgetting, guiding the classi-
fier to adaptively BEMA.

Analysis Firstly, our design of separate prompt pools for
each domain ensures that the learned prompts are not updated
after learning the corresponding domain to preserve old
domain knowledge. Secondly, the design of freely select-
ing prompts from multiple domain prompt pools greatly
enhances the diversity of our learned prompts, and during
prediction, the model can adaptively select knowledge from
different domains to assist in prediction. Thirdly, our BEMA
can adaptively fuse based on the model’s forgetting degree to
better balance the learning of new knowledge and the reten-
tion of old knowledge.

4 Experiments

4.1 Experimental Settings

4.1.1 Benchmarks and Protocols

All the experiments are conducted on four multi-domain
benchmarks including DomainNet (Peng et al., 2019),
ImageNet-R (Hendrycks et al., 2021), ImageNet-C (Hendrycks
& Dietterich, 2018), and ImageNet-Mix.

• DomainNet (Peng et al., 2019). It is a large-scale dataset
for domain adaptation and DIL which contains 345
classes and 586,575 images in total. These images are
collected from 6 different style domains including Real,
Quickdraw, Sketch, Painting, Infograph, and Clipart.

• ImageNet-R (Hendrycks et al., 2021). It is another
widely-used multi-domain benchmark that contains a
total of 30,000 images of 200 categories taken from Ima-
geNet (Deng et al., 2009). All the images are split into
15 different style domains (e.g. art, cartoons, deviantart,
graffiti, and so on). In our experiments, we divide the
images in each domain of ImageNet-R into training and
testing sets under a 7:3 ratio and train on all 15 different
domains sequentially.

• ImageNet-C (Hendrycks & Dietterich, 2018). Unlike the
above two datasets mainly focusing on image style varia-
tions, ImageNet-C is generatedbasedon ImageNet (Deng
et al., 2009) by collecting images from 1,000 categories
of ImageNet which cover 15 diverse quality corruptions
and environment changes covering noise, blur, weather
changes, and so on. In experiments, we utilize 200 cate-
gories of ImageNet-Cwhich are the same as ImageNet-R,
and treat different corruption or environment types as dif-
ferent domains for DIL. The total 10,000 images of each
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domain are further split into 7,000 for training and 3,000
for testing. For all three datasets, the evaluated methods
are trained in all the domains in turn and then tested on
all of them without knowing the domain information.

• ImageNet-Mix. To further simulate the critical multi-
source domain shifting scenario in DIL, a mixed dataset
ImageNet-Mix is built upon ImageNet-C and ImageNet-
R which contains images from 200 common classes
shared by both datasets. Thus, ImageNet-Mix contains a
total of 30 domains which simultaneously involve differ-
ent image styles, qualities, and environmental variations.
When experimenting on ImageNet-Mix, we interchange-
ably train and evaluate the domains of ImageNet-R and
ImageNet-C.

4.1.2 Comparison Methods

For DIL, the Upper-bound performance that a method can
reach is regarded as adopting supervised finetuning on all
the data of all domains. Besides, FT-Seq is the sequential
finetuning baseline aiming to train on all domains sequen-
tially. EWC (Kirkpatrick et al., 2017) and LwF (Li &Hoiem,
2017) are two representative incremental learning baselines
that are widely compared. In experiments, we accordingly
transfer them to fit the DIL setting. Furthermore, the state-of-
the-art regularization-based method ESN (Wang et al., 2023)
and prompting-based DIL methods are compared including
L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022a),
S-Prompts (Wang et al., 2022b) and CODA-Prompt (Smith
et al., 2023). For a fair comparison, we adopt the same
pre-trained ViT (ViT-B/16) (Dosovitskiy et al., 2020) as the
backbone for all five approaches and our proposedC-Prompt.

4.1.3 Evaluation Metrics

FollowingpreviousworksWanget al. 2022b, 2022a,2022c,
the Average Accuracy (Ave-ACC) and Average Forgetting
are reported as the main evaluation metric for DIL. Specifi-
cally, after training on the s-th domain, theAverageAccuracy
As is calculated as:

As = 1

s

s∑

τ=1

as,τ , (13)

where as,τ represents classification accuracy on τ -th domain
after training on s-th domain. The Average Forgetting Fs is
calculated as:

Fs = 1

s − 1

s−1∑

τ=1

bs,τ , (14)

bs,τ = max
i∈1,2,··· ,s−1

{ai,τ } − as,τ . (15)

4.1.4 Implementation Details

In our experiments, we sorted domains by decreasing image
counts, aligningwith the setting inCaSSLe (Fini et al., 2022),
to simulate a challenging DIL scenario for all methods which
are consistent and fair.

To trainC-Prompt,we leverage theAdamoptimizer (Kingma
& Ba, 2014) with default parameter settings, a batch size of
128, and a constant learning rate of 0.005 for all benchmarks.
The training images are resized to 224×224 and normalized
to the range of [0, 1] tomatch the pre-trainedmodel. Training
too many epochs for a domain will result in catastrophic for-
getting (Buzzega et al., 2020), hence we train every domain
for 5 epochs. The hyperparameters N , L p and k are the same
as DualPrompt (Wang et al., 2022a) in our C-prompt, and we
add one extra η which is not sensitive as we have discussed
in Sect. 5.4.

4.2 Comparison with State-of-the-Art

The overall results of the comparison methods on Domain-
Net, ImageNet-R, ImageNet-C, and ImageNet-Mix are reported
in Table 1. As demonstrated, no matter whether DIL is
conducted under style changes or quality variations, our
C-Prompt can consistently outperform all the state-of-the-
art (SOTA) DIL methods by a large margin on all four
benchmarks. Compared with the second-best player, CODA-
Prompt, the overall average performance improvement is
3.61% owing to the compositional prompt pool and BEMA
utilization. Additionally, our C-Prompt achieve the best per-
formance on the Average Forgetting metric, further confirm-
ing that our split prompt pool and BEMA design can better
mitigate forgetting of old knowledge. Although another
SOTAmethod, S-Prompts, proposes to retain a separate clas-
sifier for each domain, our C-Prompt still can beat S-Prompts
by 1.31% on DomainNet by just using a single classifier
for all domains. Moreover, S-Prompts performs badly in
ImageNet-R, ImageNet-C, and ImageNet-Mix with a gap
of 10–17% compared with our method because S-Prompts
has to predict the domain index for each testing sample. As
the number of domains increases, the accuracy of predicting
the domain to which the sample belongs largely decreases,
resulting in severe performance degradation in S-Prompts.

In addition, the per-domainperformancedetails ofDomain-
Net are reported in Table 2. Taking a closer look at the
results, the performance of C-Prompt is close to the SOTA
methods in the latter domains but significantly better than
the SOTA methods in the former domains. This is mainly
due to the design of compositional prompting and prompt-
guided BEMA algorithm, which greatly improves the ability
of our model to mitigate catastrophic forgetting. Noted
that although FT-Seq achieves the best result in the last
domain (Clipart), it suffers from severe performance drops on
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Table 1 The overall comparison results on four benchmarks

Methods Ave-ACC (↑) / Forgetting (↓) All
DomainNet ImageNet-R ImageNet-C ImageNet-Mix

Upper-bound 65.37/– 70.78/– 94.07/– 79.08/– 77.33/–

FT-Seq 48.49/19.65 58.80/8.41 67.47/24.73 54.17/20.94 57.23/18.43

EWC (Kirkpatrick et al., 2017) 42.77/6.52 37.93/7.34 31.79/10.84 28.46/8.92 35.24/8.41

LwF (Li & Hoiem, 2017) 45.01/7.23 54.85/6.39 22.51/15.23 40.04/6.83 40.60/8.92

L2P (Wang et al., 2022c) 48.27/5.25 54.66/6.03 68.12/5.82 56.35/4.92 56.85/5.51

S-Prompts (Wang et al., 2022b) 57.37/2.31 45.05/1.89 69.22/2.94 56.49/2.41 57.03/2.39

DualPrompt (Wang et al., 2022a) 49.36/1.44 57.66/1.02 78.38/1.46 63.09/1.39 62.12/1.33

ESN (Wang et al., 2023) 40.62/5.23 46.27/5.28 64.18/6.34 53.25/6.29 51.08/5.79

CODA-Prompt (Smith et al., 2023) 54.40/1.83 58.41/1.34 78.82/2.28 62.60/2.04 63.56/1.87

C-Prompt (Ours) 58.68/1.34 62.55/0.75 81.16/1.25 66.30/0.92 67.17/1.07

Bold values indicate the highest result. Italic values indicate the second-highest result

Table 2 The per-domain comparison results on DomainNet

Methods Real Quickdraw Painting Sketch Infograph Clipart Ave-ACC

Upper-bound 79.09 68.03 66.26 65.68 37.21 75.95 65.37

FT-Seq 61.81 30.81 46.01 51.39 24.37 76.56 48.49

EWC (Kirkpatrick et al., 2017) 54.77 17.88 39.41 47.76 20.79 75.98 42.77

LwF (Li & Hoiem, 2017) 63.28 16.72 47.12 52.57 21.90 68.45 45.01

L2P (Wang et al., 2022c) 72.38 13.39 52.57 49.95 25.47 75.88 48.27

S-Prompts (Wang et al., 2022b) 80.29 41.19 65.87 55.37 37.43 64.08 57.37

DualPrompt (Wang et al., 2022a) 73.01 13.96 53.85 51.97 27.13 76.29 49.36

ESN (Wang et al., 2023) 66.40 10.12 47.93 48.87 22.23 78.14 40.62

CODA-Prompt (Smith et al., 2023) 74.58 23.36 56.91 59.21 31.61 80.71 54.40

C-Prompt (Ours) 83.91 45.46 65.23 58.12 30.98 68.36 58.68

Bold values indicate the highest result

previous domains due to the forgetting issue.A similar conse-
quence can also be observed in Fig. 7 where the per-domain
performance of ImageNet-R, ImageNet-C, and ImageNet-
Mix is presented. Various visualization results of the test
cases are shown in Fig. 8 to further demonstrate the superi-
ority of our C-Prompt method. For the hard cases in which
both the CODA-Prompt and DualPrompt predict incorrect
classes, our C-Prompt can accurately handle them.

4.3 Comparison with Examplar-Based DIL Methods

To further validate the effectiveness of our method, we con-
ducted experiments comparing it with exemplar-based DIL
methods. Following the experimental settings of existing
methods L2P and S-Prompts, we conducted experiments on
the CORe50 (Lomonaco &Maltoni, 2017) dataset and com-
pared with exemplar-based methods ER (Chaudhry et al.,
2019), GDumb (Prabhu et al., 2020), BiC (Wu et al., 2019),
DER++ (Buzzega et al., 2020), Co2L (Cha et al., 2021) and
DyTox (Douillard et al., 2022).

The experimental results are shown in Table 3. Without
retaining exemplars, our method outperforms the second-
best method by 2.18%. This is attributed to the design of
our prompt pool and BEMA, allowing C-Prompt to retain
knowledge from old domains while learning new knowl-
edge. Although our method is not designed for scenarios that
retain exemplars, when exemplars are retained, our method
still achieves best performance, surpassing the second-best
method by 1.79%. This is because retaining exemplars can
slow down the model’s forgetting of old domain knowledge,
and our C-Prompt can further retain knowledge from old
domains on this basis, resulting in higher accuracy.

4.4 Comparison with Parameter-Efficient
Fine-Tuning (PEFT) Methods

Recently, someparameter-efficient fine-tuning (PEFT)meth-
ods were proposed to train a small number of parame-
ters, allowing pre-trained models to adapt to downstream
tasks efficiently. Considering that our C-Prompt is also
a parameter-efficient method, we compare C-Prompt with
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Fig. 7 The per-domain comparison results on ImageNet-R, ImageNet-C and ImageNet-Mix

them in the DIL task. As shown in Table 4, while these
methods have lower computational costs, they suffer from
catastrophic forgetting and performance degradation when
learning multiple different domains in a continuous manner.

5 Ablation Study and Analysis

5.1 The Influence of Different Components

To verify the effectiveness of different components in our
proposed C-Prompt, ablation experiments are conducted on
DomainNet and reported in Table 5. ComP represents the
compositional prompting in Eq. (7) and BEMA denotes the
proposed shared prompt-guided adaptive exponential mov-
ing average algorithm in Eq. (9). As demonstrated by the
results, when neither component is used, the C-Prompt is
degraded to a frozen pre-trained ViT model with a learn-
able classifier. Since the proposed compositional prompting
and BEMA are complementary to each other, removing
either one will result in severe performance degradation, but
still outperform the ViT baseline. Note that when adding
BEMA to the model, the performance in the last domain

decreased by 8.2%, but improved by 5–29% in the former
five domains, demonstrating the effectiveness of BEMA in
retaining learned knowledge. Fortunately, the proposed com-
positional prompt can alleviate knowledge forgetting in the
last domain to some extent.

5.2 Ablation on Compositional Prompting

5.2.1 Why ComP Component is Needed?

As shown in Table 6, we conduct experiments where the
backbone is fixed and only the classifier is learnable. We
explore using KNN as the classifier, Fine-tuning the classi-
fier, and using EWC and LwF for the classifier without the
Comp component. However, the experimental results with-
out Comp are inferior to those with Comp. This is because
when the backbone is fixed to prevent forgetting, the learn-
ing capacity of the classifier is limited. In contrast, using the
Comp module significantly enhances the model’s learning
capacity, leading to improved performance.
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Fig. 8 The visualization results of partial test samples in ImageNet-R. The predictions of CODA-Prompt, DualPrompt, and our proposed C-Prompt
are presented for these samples

5.2.2 The Influence of Different Forms of Prompting

We further explore the influence of different forms to uti-
lize prompting. In Table 7, Single represents using only one
single prompt pool for all domains and directly concatenat-
ing the selected prompts one by one without composing
them, Comp represents fusing the selected prompts by
Eq. (7), and Pools represents maintaining a specific prompt
pool for each domain. Thus, Pools + Comp denotes our
entire C-Prompt method. The results present that either
fusing the selected prompts (55.74%) or learning multiple
domain-specific prompt pools (57.53%) can all improve the
performance since the former can readily utilize informa-
tion from different prompts to complement each other and
the latter is helpful to mitigate forgetting of the learned
domains. Our whole C-Prompt can achieve the best perfor-
mance (58.68%) by integrating all components.

5.2.3 Selected Frequency of Prompts in the Prompt Pool

During experiments, we found that the prompts were not
selected at the same frequency during training and testing.
Figure 9 shows the selected frequency of each prompt in each
domain-specific prompt pool on the DomainNet dataset dur-
ing the final testing. Several prompts are frequently selected
since they can capture the commonly shared information
among most data samples. While, for some samples which
exhibit specific information different from the others, a part
of prompts can be learned to well handle them. As a result,
these prompts are not frequently selected.

Additionally, we use T-SNE to visualize prompts. As
shown in Fig. 10, our domain-specific prompts are gener-
ally diverse to learn the domain difference, while they also
capture the domain commonality as the center cluster in the
figure.
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Table 3 Comparison with exemplar-based DIL methods on the
CORe50 dataset

Methods Buffer size Ave-ACC

ER (Chaudhry et al., 2019) 50/class 80.10

GDu mb (Prabhu et al., 2020) 74.92

BiC (Wu et al., 2019) 79.28

DER++ (Buzzega et al., 2020) 79.70

Co2L (Cha et al., 2021) 79.75

DyTox (Douillard et al., 2022) 79.21

L2P (Wang et al., 2022c) 81.07

C-Prompt (ours) 82.86

EWC (Kirkpatrick et al., 2017) 0/class 74.82

LwF (Li & Hoiem, 2017) 75.45

L2P (Wang et al., 2020) 78.33

S-Prompts (Wang et al., 2022b) 83.13

C-Prompt (ours) 85.31

Bold values indicate the highest result

Table 4 Compare with other parameter-efficient fine-tuning (PEFT)
methods on the ImageNet-R dataset

Methods Ave-ACC

BitFit (Zaken et al., 2021) 53.08

LoRA (Hu et al., 2021) 57.96

C-Prompt (ours) 62.55

Bold values indicate the highest result

5.2.4 The Influence of Different Designs in BEMA

Firstly, we study the influence of different update granularity
for EMA. The granularity from coarse to fine is task-wise,
epoch-wise, and batch-wise. Themore fine-grained the gran-
ularity is, themore likely themodel can retainmore historical
information during incremental learning, and thus theweaker
the forgetting of old knowledge is. As shown in Table 9,
our proposed batch-wise EMA strategy significantly outper-
forms the other two designs. This is because a batch-wise
update is more suitable for handling severe data variations in
the DIL scenario. Different choices of βt for adaptive knowl-
edge consolidation are compared.Using the adaptive strategy

Table 6 Comparison of performance with and without ComP compo-
nent on ImageNet-R

Backbone Classifier Ave-ACC

Fixed ViT KNN 50.96

FT-C 49.78

EWC-C 51.09

LwF-C 50.69

ComP + Fixed ViT FT-C 56.58

BEMA (Ours) 62.55

Bold value indicates the highest result
KNNmeans using the K-nearest neighbor as the classifier. FT-C, EWC-
C, and LwF-C represent applying Fine-Tune, EWC, and LwF to the
classifier respectively

defined in Eq. (12) performs better than the fixed βt and other
widely-used adaptive ways.

5.3 Ablation on BEMA

5.3.1 Why use BEMA for Classifier?

Due to the continuous updates of the classifier throughout the
incremental learning process, if no anti-forgetting measures
are taken, catastrophic forgettingwill occur.We initially con-
sidered some classical and generic anti-forgetting methods,
such as LwF and EWC. However, these methods have a sig-
nificant drawback: they are unable tomeasure the differences
between different domains and, therefore, cannot adaptively
combine old and new knowledge. As mentioned in Sect. 3.4,
to address this limitation, we devise the shared prompt-
guided BEMA. As shown in Table 8, BEMA is capable
of effectively balancing knowledge forgetting and acquisi-
tion, which enables BEMA to overcome the limitations of
traditional anti-forgetting methods and offer a more robust
solution for domain incremental learning tasks.

5.3.2 The Influence of Different Designs in BEMA

Firstly, we study the influence of different update granularity
for EMA. The granularity from coarse to fine is task-wise,

Table 5 Ablation study about
the influence of different
components in C-Prompt

Components DomainNet
ComP BEMA Real Quickdraw Painting Sketch Infograph Clipart Ave-ACC

✗ ✗ 71.75 10.41 50.05 40.93 23.26 71.20 44.60

✗ ✓ 72.90 13.55 52.22 47.98 24.59 76.12 47.89

✓ ✗ 72.84 16.77 53.23 50.14 25.72 76.56 49.21

✓ ✓ 83.91 45.46 65.23 58.12 30.98 68.36 58.68

✗ and ✓ represent without or with this component
Bold values indicate the highest result
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Table 7 Ablation study about
the influence of different forms
of prompting used in our
proposed method

Prompting forms DomainNet
Real Quickdraw Painting Sketch Infograph Clipart Ave-ACC

Single 82.63 27.39 63.29 57.86 30.03 71.01 55.30

Single + comp 83.02 27.15 63.48 58.40 30.64 71.73 55.74

Pools 83.21 35.01 64.71 58.91 32.46 70.88 57.53

Pools + comp 83.91 45.46 65.23 58.12 30.98 68.36 58.68

Bold values indicate the highest result

Table 8 The performance of using different anti-forgetting methods on
ImageNet-R

Methods Ave-ACC

ComP + KNN 50.96

ComP + FT-C 56.58

ComP + EWC-C 58.26

ComP + LwF-C 60.83

ComP+BEMA (ours) 62.55

Bold value indicates the highest result

Fig. 9 The selected frequency of prompts in the prompt pool on
DomainNet

Fig. 10 The T-SNE results of our domain-specific prompts. The differ-
ent colored circles represent prompts from different domains

epoch-wise, and batch-wise. Themore fine-grained the gran-
ularity is, themore likely themodel can retainmore historical
information during incremental learning, and thus theweaker
the forgetting of old knowledge is. As shown in Table 9, our
proposed batchwise EMA strategy significantly outperforms
the other two designs. This is because a batch-wise update is
more suitable for handling severe data variations in the DIL
scenario. Different choices ofβt for adaptive knowledge con-
solidation are compared. Using the adaptive strategy defined
in Eq. (12) performs better than the fixedβt and other widely-
used adaptive ways.

Table 9 Ablation study about
the influence of different
designs in the proposed BEMA
algorithm

BEMA designs DomainNet
Real Quickdraw Painting Sketch Infograph Clipart Ave-ACC

Task-wise 84.31 20.22 62.11 55.05 29.70 68.93 53.39

Epoch-wise 84.37 23.82 63.18 56.32 30.43 69.23 54.56

Batch-wise 83.91 45.46 65.23 58.12 30.98 68.36 58.68

βt = 0.9999 83.22 36.33 63.86 57.53 30.17 69.53 56.77

βt = t/(1 + t) 84.61 36.17 62.43 55.45 29.23 67.58 55.91

βt = (t − 1)/t 84.35 39.61 63.92 57.18 30.14 68.86 57.34

βt = t/(Gt/G∗
t + t) 84.44 35.73 62.56 55.26 29.07 67.39 55.74

βt in Eq. (12) 83.91 45.46 65.23 58.12 30.98 68.36 58.68

Bold values indicate the highest result
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Fig. 11 The influence of hyperparameters in C-Prompt

Table 10 The performance of usingBEMA toDualPrompt onDomain-
Net

Methods Ave-ACC Quickdraw

DualPrompt 49.36 13.96

DualPrompt+BEMA 57.84 36.15

C-Prompt (ours) 58.68 45.46

Bold values indicate the highest result

Table 11 The performance of using different pre-trained backbone on
ImageNet-R

Pre-trained model FT-Seq C-Prompt

ViT-B/16 (Dosovitskiy et al., 2020) 58.80 62.55

MAE (He et al., 2022) 49.76 56.09

DINO (Caron et al., 2021) 50.83 57.96

Bold values indicate the highest result achieved using the same back-
bone, i.e., the maximum value in each row

5.3.3 Implement BEMA to DualPrompt

Due to the compatibility of ourBEMAcomponentwithDual-
Prompt, as it only requires the shared prompt to adaptively
mitigate classifier forgetting, we apply BEMA to Dual-
Prompt to further demonstrate its effectiveness.

As shown in Table 10, DualPrompt with our BEMA can
also largely improve the performance on the Quickdraw
domain, andourC-Prompt performs evenbetter. This demon-
strates that our BEMA can effectively mitigate the forgetting
problem and is more powerful in our C-Prompt than with
DualPrompt.

Table 12 Comparison of training time on DomainNet (seconds/epoch)
with state-of-the-art

Methods Training time (s)

L2P (Wang et al., 2022c) 973

S-Prompts (Wang et al., 2022b) 871

DualPrompt (Wang et al., 2022a) 928

CODA-Prompt (Smith et al., 2023) 992

C-Prompt (Ours) 989

5.4 Research on Generalization of C-Prompt

5.4.1 Apply to more backbones

We conduct additional experiments using the pre-trained
DINO (Caron et al., 2021) and MAE (He et al., 2022) as
backbones on ImageNet-R. As shown in Table 11, for all
three backbones, our C-prompt can largely and consistently
improve the Ave-ACC performance over all domains.

5.4.2 The Influence of Different Hyperparameters in
C-Prompt

There are four key hyperparameters in C-Prompt including
the prompt pool size N , the length of prompts L p, the num-
ber of selected prompts k, and η used in BEMA. Specifically,
L p × N determines the learning capacity of the model, L p

determines the learning capacity of a single prompt, n affects
the diversity of the prompt pool, and k affects the diversity
of the final compositional prompt. Besides, η is used to bal-
ance the learning of new knowledge and the retention of
old knowledge. As shown in Fig. 11, the best combination
of these hyperparameters can be achieved when N = 225,
L p = 4, k = 2, and η = 6.5.

5.5 Computation Cost of C-Prompt

5.5.1 Comparison of Training Time with State-of-the-Art

In our experiments, our proposed C-Prompt achieves better
performance than the SOTAmethods on all four benchmarks.
Moreover, we further investigate the time cost of C-Prompt
compared to the SOTA incremental learning methods. The
time cost (in seconds) of training one epoch on the first
domain of DomainNet for the SOTA methods and our C-
Prompt are reported in Table 12. Compared with L2P (Wang
et al., 2022c), S-Prompts (Wang et al., 2022b) and Dual-
Prompt (Wang et al., 2022a), our C-Prompt takes 1.64%,
13.55%, and 6.57% more time for training, respectively.
Compared with CODA-Prompt (Smith et al., 2023), training
time is almost the same. This is because after introducing
the globally shared prompt-guided BEMA component, C-
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Table 13 Comparison of the
number of parameters with the
state-of-the-art

Methods Total params Trainable params

L2P (Wang et al., 2022c) 86,263,843 311,387

S-Prompts (Wang et al., 2022b) 92,964,094 1,637,910

DualPrompt (Wang et al., 2022a) 86,514,211 561,755

CODA-Prompt (Smith et al., 2023) 88,437,580 2,638,926

C-Prompt (ours) 89,180,505 3,381,851

Total Params and Trainable Params represent the numbers of total parameters (including the frozen and
learnable parameters used) and the learnable parameters respectively

Table 14 Comparison of
iteration time with different
numbers of prompts

Prompts Iteration time (s)

10 2.03

30 2.06

90 2.09

150 2.11

Prompt needs to calculate the average results of the classifier
at each batch, which has additional time overhead. Also, as
we can see in Sect. 5.5.2 below, our method has more train-
able parameters than the SOTA methods.

5.5.2 Comparison of the Number of Parameters with
State-of-the-Art

We also investigate the number of parameters to evaluate
the memory overhead of C-Prompt during training. Table 13
shows the numbers of total parameters and trainable param-
eters of the SOTA methods and C-Prompt. Compared with
L2P and DualPrompt, the total parameters of our model have
only increased by 3.38% and 3.08% respectively, and the
number of learnable parameters has risen by 6 to 10 times.
Comparedwith S-Prompts,when the total parameter quantity
of our model is reduced by 4.07%, the learnable parameters
are doubled. Compared with CODA-Prompt, the trainable
parameter quantity of our model is also increased by 28%.
This is because our method leverages a more diverse prompt
pool for prompt combination, which performs better on the
DIL task with a more severe domain shift.

5.5.3 Training Time Cost of Different Numbers of Prompts

As shown in Table 14, our time cost is almost the same as
S-Prompts and is not sensitive to the prompt pool size. This
is because, compared to the complex ViT structure, prompts
are lightweight. Moreover, the prompt selection process is
based on computing the cosine similarity between the query
and the corresponding key in the prompt. This operation only
requires one matrix multiplication to obtain the similarities
and then sort the similarity results, making the additional
computational overhead negligible and negligible.

6 Conclusion

The important and practical DIL task becomes even more
challenging when multiple sources of domain shifts, such as
style shifting, quality degradation, and environment changes,
are simultaneously involved. Thus, we propose a novel
paradigm called C-Prompt to mitigate the critical forgetting
challenge caused by domain gaps in DIL. Unlike existing
prompting-based methods, our proposed C-Prompt explores
a set of globally shared prompts across all domains to
estimate knowledge shifting for automatically balancing
knowledge acquisition and forgetting. Moreover, a specific
pool of learnable prompts for each domain is learned, and
then all of them are further utilized in a compositional man-
ner to enhance the learning capacity of models and facilitate
model inference. Extensive experiments on various multi-
domain datasets have thoroughly verified the superiority
of our proposed C-Prompt against the state-of-the-art DIL
methods.
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